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On Oseen’s approximation 

By W. CHESTER 
Department of Mathematics, University of Bristol 

(Received 22 January 1962) 

An investigation is made into the validity of the Oseen equations, for incom- 
pressible, viscous flow past a body, as an approximation to the Navier-Stokes 
equations. It is shown that, when the body is such that a reversal of the uniform 
flow at infinity merely reverses any component of the force on the body without 
changing its absolute magnitude, that component can be determined correctly 
to the first order in the Reynolds number, though the detailed velocity field is not 
correct to this order. Moreover, this force can be deduced simply from a know- 
ledge of the force on the body according to Stokes’s approximation. 

The analysis is also generalized to include the magneto-hydrodynamic effects 
when the fluid is conducting and the flow takes place in the presence of a magnetic 
field. 

1. Introduction 
Since the appearance of Stokes’s approximate solution for the flow of a viscous 

fluid past a sphere (Stokes 1851), numerous attempts have been made, both to 
generalize the problem by changing the shape of the body, and to improve the 
calculation by including the effect of the inertia terms which were neglected in 
the original calculation. Oseen (1927)) in particular, studied the problem exten- 
sively. Using the approximation which now bears his name, he gave solutions for 
the flow past various bodies at small Reynolds number (R) and calculated the 
force to the first order in R, one term more than would be given by the Stokes 
approximation. It is, however, generally recognized that the two approximations 
are of comparable accuracy, at  least in the vicinity of the body. By the inclusion of 
the effect of the inertia terms, Oseen improved the flow picture far from the body 
where the Stokes approximation is inadequate, but near the body the difference 
between the two solutions is of an order of smallness which is outside the accuracy 
of either approximation. Oseen’s calculation for the force thus requires some 
further justification, and this has recently been supplied, for flow past a sphere, 
by the work of Kaplun (1957) and Proudman & Pearson (1957). It appears that 
although Oseen failed to calculate correctly the velocity field, his result for the 
drag on the sphere, namely 

where Ds is the Stokes drag, is in fact valid because the correction to the velocity 
field makes no contribution to the total force on the sphere. 

It is the purpose of this investigation to present a general criterion for the use 
of Oseen’s equations as an approximate representation of the full Navier-Stokes 

D = Ds( 1 + #R), 
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equations. For the calculation of the force to the first order in the Reynolds 
number, it will be shown that the approximation is adequate provided that the 
force on the body is reversed in direction without change of magnitude, when the 
uniform flow at infinity is reversed. Furthermore, when this condition is satisfied, 
the force on the body can be deduced, correct to the first order in R, merely from 
a knowledge of the flow according to the Stokes approximation. 

Because of the recent interest which has been shown in the corresponding 
magneto-hydrodynamic problem, the analysis has been generalized to include the 
effect of a magnetic field, aligned at infinity with the uniform stream, on the flow 
of a conducting fluid. Several special cases have been considered. On the assump- 
tion that the Reynolds number and magnetic Reynolds number were negligibly 
small, Chester (1957) found the drag on a sphere to be 

D = &(l+ @I), 

correct to the first order in the Hartmann number. Chang (1960) generalized this 
to include any body of revolution aligned with its axis parallel to the uniform 
stream at infinity. Gotoh (1960a, b)  considered the flow past a sphere including 
the first-order effects of Reynolds number and magnetic Reynolds number by an 
Oseen-type approximation. These results are special cases of a general formula 
valid for any body which satisfies the criterion stated in the previous paragraph. 

Brenner (1961) has anticipated the results for the solution of the classical 
Oseen equations, and claims greater generality for them than is demonstrated in 
the present paper. But his arguments, lacking what he calls 'formal details of our 
procedure' do not seem to me to be convincing. 

2. Mathematical formulation of the problem 
We consider the steady flow of an incompressible, viscous, conducting fluid 

past a three-dimensional body of finite size. At infinity the flow is uniform and 
parallel to the x-axis. A magnetic field is imposed which is also uniform and 
parallel to the x-axis at  infinity. 

The equations to be solved are then, with the usual notation for electromagnetic 
quantities (measured in M.K.S. units), 

(2.1) 1 V'AH' = u(E'+,uV'AH'), V'.H' = 0, V'AE' = 0, 

V'.V' = 0, p(V'.V')V' = -V'~' -~VV'A(V'AV')+,U(V'AH')AH' ,  

where V', p', p, v denote respectively the velocity, pressure, density and kinematic 
viscosity. The prime has been used here so that the same symbols without the 
prime can later be used to denote non-dimensional quantities. 

We assume that the body lies within a sphere of radius L and centre at  the 
origin of co-ordinates. The speed of the uniform stream at infinity is denoted by 
U , ,  and the magnitude of the magnetic field at infinity is denoted by H,. The 
space co-ordinates can then be made non-dimensional with the factor L-1, and 
the dependent variables as follows, 

H' = H,H, E' = ,uU, H,E, V' = U,V, p'-p& = pvU,p/L. (2 .2)  
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Equations (2.1) then become 

} (2.3) 
V A H  = R,(E+VhH), V.H = 0, V A E  = 0, 

V . V  = 0, R(V.V)V = - V ~ - V A ( V A V ) + M ~ ( E + V A H ) A H ,  

(2.4) i 
where R = Urn Llv = Reynolds number, 

R, = Urn Lprr = magnetic Reynolds number, 

M = pHm L(g/pv)& = Hartmann number, 

these three parameters being essentially non-negative. 
In  the general problem a solution of equations (2.3) is required subject to the 

relevant boundary conditions on the body and at infinity. In what follows the 
nature of this solution is discussed when the three parameters defined by (2.4) are 
all small compared with unity. 

3. The method of solution 
The arguments used are based on the theory developed by Kaplun (1957) and 

applied by Proudman & Pearson (1957). For a detailed account the reader is 
referred to the above papers; here the discussion is restricted to a less formal 
summary of those aspects which are directly relevant to the present problem. 

The Kaplun theory was, in fact, developed to deal with the difficulties asso- 
ciated with the approximate solution of equations such as (2.3). It has long been 
recognized that a straightforward perturbation approach breaks down, the 
reason being that in different regions of the flow, different terms of the equations 
are dominant. For example, in the classical Stokes solution for flow past a sphere 
(with R = R, = M = 0) ,  the term V A (V A V) in the equation of motion is O(r-3), 
when the radial co-ordinate r is large. But this solution is based on the neglect of 
the inertia term R(V . V) V which is merely O(Rr--2). Thus if Rr is of order one or 
larger, the Stokes solution must fail, and although it satisfies the boundary 
condition at  infinity, it does not give a reliable picture of the flow at large 
distances. In  any case the fact that it does satisfy the boundary condition is 
exceptional, one finds that a higher approximation which satisfies all the boundary 
conditions cannot be found. 

On the other hand, the Oseen approximation, based on a perturbation about 
the uniform flow at infinity, does give a uniformly valid zero-order approximation. 
For this is a good approximation to the flow at large distances, and is no worse 
than the Stokes approximationnear the body, at  least to zero order in R. However 
such an approach does not improve the Stokes solution near the body; as far as 
higher approximations are concerned the boundary condition of zero velocity at 
the body is not consistent with linearization about a uniform stream. In short 
the Stokes solution is adequate for the crudest approximation to the flow near 
the body, but higher approximations require a more careful investigation of the 
flow at large distances, in order that the boundary conditions there shall be 
satisfied to the required accuracy. 

To overcome the difficulty, two approximations are obtained, an inner solution 
which satisfies the boundary conditions on the body, and an outer solution which 
satisfies the boundary conditions at infinity, Thus neither solution is required to 
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satisfy all the conditions, and to determine them completely it is assumed that 
both solutions are valid in some region where they overlap, and can hence be 
matched there to  the appropriate degree of accuracy. 

For the problem formulated in the previous paragraph, the inner solution will 
be of the form I v = vo+vl+ ..., 

p = p,+p,+ *.., 
H = h,+h,+ ..., 
E = e,+e,+ .... J 

Vhh, = 0, V.h, = 0, VAe, = 0, V.(e,+v,~h,) = 0, 

V.v, = 0, 

Note that the equation V . (e,  + V, A h,) = 0, which is a consequence of the first 
of equations (2.3), is required to make the approximation consistent. It deter- 
mines the field e,, which only appears when V . (v, A h,) is different from zero. 

The next approximation is obtained from (2.3) by retaining terms of the first 
order in R and R, (there is no term of order M )  and substituting therein the 
Stokes solution. The resulting equations are 

Vhh, = Rm(e,+v,hho), V.h, = 0, Vhe, = 0, V.(e,+v,Aho+vohh,) = 0, 

V.v, = 0, 

The leading terms, equivalent to the Stokes solution, satisfy the equations 

- V ~ , - V A ( V A V , )  = 0. 
} (3.2) 

1 R(v,.V)v, = -VP,-VA(VAV,).  
(3.3) 

Note that the equations for v, and v1 are independent of the electromagnetic 
field, and although the latter field, together with its continuation inside the body, 
must satisfy the usual continuity conditions at  the surface of the body, it is not 
necessary to consider this explicitly as far as the volocity is concerned. 

The Stokes solution has the following property; if the uniform streaming 
motion at  infinity is reversed in direction, the appropriate solution is 

-vo, -Po, h,, -eo- 
In  general, the next approximation does not have this simple property, and if we 
writev, = v,+va,pl = p,+p,fortheoriginalsolution,and( -v,+v,), ( -p,+pa) 
when the flow at infinity is reversed, it follows from (3.3) that 

(3.4) 1 V.v, = 0, R(v,.V)vo = - V ~ , - V A ( V A V ~ ) ,  

v.v, = 0, 0 = - V ~ , - V A ( V A V , ) .  

In  other words, v, is also a solution of Stokes’s equations, though v, is not. The 
result will be required in the subsequent analysis. 

Consider now the outer solution. The leading terms are a uniform streaming 
motion and a uniform magnetic field; the next approximation is obtained from 
a perturbation of this solution giving 

V = i + V , +  ...,) 

i p = Pl+ ..., 
H = i+H,+ ..., 
E = El+ ..., 

(3.5) 
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where i is a unit vector parallel to the x-axis and 

} (3.6) 
VAH, = R,(E,+V,ni+i~H,) ,  V.H, = 0, VAE, = 0, 

V . v ,  = 0,  

As already stated, the inner and outer solutions are finally determined by 
matching to an appropriate degree of accuracy in a common region of overlap. 
For our purpose it is sufficient to compare the inner solution with the approxima- 
tion to the outer solution to the first order in R, R, and M .  It will be shown that 
this approximation takes the form 

RaV,/ax = -V~,-Vh(VhV,)+M2(E,+V,Ai+iAH,)Ai.  

v = V,+V,+V,, (3.7) 

where V,, V, and V, are to be matched respectively with v,, V, and v,. The 
matching of V, and v, gives the usual Stokes inner solution. The expression for V, 
is particularly simple. Explicitly 

V, = (y/l6rrpvLU,) {pozi + $F0,’,,j + $lib,k), 13.8) 

where i, j, k are unit vectors parallel to the co-ordinate axes, F, is the force on the 
body according to Stokes approximation, and 

R2 - RR, + 2M2 
{(R - Rm)2 + 4M2}tY 

Y = M 2  > RR, 

= R, M 2  < RR,. (3.9) 

Thus v, is a solution of Stokes’s equationswhich tends to a uniform flow at large 
distances from the body. If the Stokes solutions which tend to i, j and k respec- 
tively are known, say v,, v;, v;, then v, is given by 

(3.10) 

There does not seem to be a simple result for v,, and the complete velocity field 
cannot be given with such generality. If, however, the body is such that a 
reversal of the flow at infinity reverses the force on the body without change of 
magnitude, then there is clearly no net contribution to the force from the velocity 
field v,. For such a body the force is given by 

F = Fo+ (~/1677p~LU,) {F,,F,+~Fo,’, ,FA+I~ozp;},  (3.11) 

where Po, FA, F; are the forces on the body associated with the velocity fields 
v,, v;, vb respectively. 

A simple example is the drag on a sphere of radius L, first calculated by Gotoh 
( 1 9 6 0 ~ ) ~  

There are many other solutions in the literature, for example, the ellipsoid at  
incidence, (Oseen 1927), all of which are consistent with (3.11). 

For bodies of more general shape, (3.11) is correct for any component of the 
force which merely changes its sign without change of magnitude in reverse flow. 
It can be used, for example, to determine the drag on a body which has fore- 
and-aft symmetry. 

D = 6np~LU,( 1 + 87). 

36 Fluid Mech. 13 
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4. The details of the Oseen solution 

is required. These equations imply that 
To verify the results described above, the general solution of equation (3.6) 

V . HI = 0,  V . V , =  0,  - V2Hl = Rma(V, - HJ/ax,) 

M 2  aH, 
R% = -V + v ~ v , + - - .  R ,  ax ax 

A particular consequence of (4.1) is that 

V2{Pl + (M2/Rm) H, . i} = 0. 

Thus we put 

where V2$ = 0. 

P, + (JP/R,) H, . i = a$/ax, 

We may then deduce from (4.1) that 

V2{Rm V ,  +PHI} = a(Rm(R - P)  V ,  + (PR, - M 2 )  HI + Rm V$)/ax 

for any constant /3. If in particular 

P = (PRm - M2)/ (R - P)  
which gives the two possible values 

Rm HI = - Rm (S,-S,)+-V$,  V, = H,+ “1 Sl + “2 s, or 
“1 + a 2  “1 a, a, + a 2  

The general solutions of equations (4.9) are of the form 

S ,  = euix{V$, + V x ,  A i}, S ,  = e-aa”{V$, + Vx, A i}, 
where ( V z + a l  ajax) #,, x, = 0, (vz- a, aiax) $2, X, = 0. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

For eaixVr$, is certainly a possible solution for S,, and this may be taken to include 
the most general expression for the x-component of S,. The most general solution 
is then obtained by adding a vector with zero x-component, and which satisfies 
the appropriate equations (4.9). The continuity equation implies that such a 
vector is of the form V x ,  A i, and the equation satisfied by x1 then follows from the 
first of equations (4.9). 

The form of the expansions for $,, #,, x,, x, which satisfy (4.13) will depend 
on the signs of a, and a,. It is clear from (4.8) that a, cannot be negative, though 
a, may be positive or negative. We assume first that both a, and a, are positive. 
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It is convenient to begin with the expansion for $. By (4.4) this is a harmonic 
function, and (4.3) implies that a$/ax is regular outside the body since both P, 
and H, . i must be regular. It is not, however, possible to deduce that $ itself is 
regular. It was first shown by Goldstein (1931) that such an assumption is too 
restrictive as far as the general solution of the classical Oseen equation is con- 
cerned, and the arguments used by Goldstein can be extended to deal with the 
present situation. 

Since a$/ax is a regular harmonic function outside the body, the general 
expression for this derivative may be written in the form 

(4.14) 
m m  

2 pn(LnpcosnO+LApsinnO) 
n=O p=O 

Here (x,p, 0) are cylindrical polar co-ordinates, and r is the radial co-ordinate 
measuring the distance from the origin. Hence r-l represents the fundamental 
solution of Laplace’s equation which is regular at  infinity. The rational harmonics 
of negative degree can all be represented as linear combinations of the terms in 
(4.14). This representation is used, rather than the more conventional expression 
involving orthogonal functions, because of its advantage in the subsequent 
development of the complete solution. 

A possible expression for $, having an x-derivative of the form (4.14), is 

m 

$ = - C pn(Kncosn0+K;sinn0) 

+ 2 C pn(Knp cos nB + 
n=O 

m m  

n=Op=O 

Although the first series is not regular along the positive x-axis, there is no 
reason to reject it  unless the behaviour persists in the expressions for the physical 
variables. By (4.11), the contributions from 9 to the x-components of both V, 
and H, are regular, hence the same must be true of the contributions from S ,  
and S,. It follows from (4.12) that both aq5,jax and aq5,jax must be regular. Now 
regular solutions of the two equations (4.13) can be written in the form (4.14) 
with r--1 replaced by e-iai(r+x)/r and e-*az(T-x)/r respectively. It follows that 
general expressions for q5, and q52 may be written in the form 

m 

n= 0 

2 (4.16) 
m m  

r 
OD 

m m  

r 

Finally x1 and x, must be expressed as regular solutions of (4.13) with the 
addition of appropriate singular solutions which render the remaining com- 
ponents of V, and H, regular. This is possible provided that KO = 0. It then 

36-2 
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follows that A ,  = B, = 0, for otherwise the relevant terms in q5, and $2 would 
imply an infinite flux across planes x = const. 

It may be verified that appropriate expressions for x1 and x2 are 

9 (4.18) 
c o m  

+ C. 3 pn(Gn, cos n8+ CAP sinno) 
n=O p=O 

In the strict application of the Kaplun theory, only the leading terms of the 
above expressions would be retained to give the outer solution, but the reasoning 
is perhaps easier to follow if the complete solution of Oseen's equations is retained. 
For it is clearthat such asolutionmust reduce to a solution of Stokes's equations in 
the limit as R, R, and M all tend to zero, and this implies certain conditions on the 
orders of magnitude of the coefficients appearing in (4.15)-(4.19). If  PI, V, and H, 
are all to be O( 1) in the limit as R, R, and M + 0, it  follows that 

(4.20) 

where a, b,  c ,  d and k are all O(1). Here A represents one of the coefficients A,, 
A,, A;, A&,, and similarly for B, C, D, K.  The detailed array of coefficients 
represented by a, b,  c,  cl and k have suffices and primes appended to agree with 
the left-hand sides of equations (4.20). 

The results so far obtained now enable approximate expressions to be calcu- 
lated for the outer solution when R, R, and M are small. The algebra is tedious 
but straightforward, and we simply quote the final expression for the velocity. 
When relations (4.15)-(4.20) are substituted in (4.11) and the appropriate 
approximations carried out, the result can be expressed in the form 

i + V, = V, + V, + V, + O(R2 + R& + H2) .  (4.21) 

The first term is O(1). In  it the coefficients a, b,  c,  d and k appear linearly, and 
R, R,, M ,  a, and a2 do not occur explicitly. The second and third terms are of 
the form 

1 A = b-a/a,, B = b+a/a,, c = c-a,a, 

D = c + a 2 d ,  K = -a+(a1a2k)/R,, 

v, = - [(a2 , + a; + Rm(a2 - al)]/(al + a2)1 {&,,i + #al j + #alk) 

= - y($aoo i + #al j + +a; k), (4.22) 

(4.23) 

(4.24) 

where = (R2 - RR, + 2X2)/((R - R,)'+ 4M2)); 

V, = ( R  + R,) 3,, 
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where v, also depends linearly on the coefficients a, 6 ,  c, d and k but not explicitly 
on the parameters R, R,, M ,  a, and a2. 

Matching between the inner and outer solution is now possible with the help 
of the approximate expression (4.21). One first obtains an inner solution v, 
satisfying the boundary conditions on the body. This solution is to match at  
large distances from the body with the uniform field i, which is the leading term 
of the outer solution, and gives the usual velocity field according to Stokes's 
approximation. The next term of the outer solution is then determined by 
choosing the coefficients in the general solution for V, so that its approximation 
V, matches with v,. Because the complete Oseen solution has been used in the 
previous analysis, V, is itself a general solution of Stokes's equation, and the 
matching a t  this stage then consists of identifying V, with v,. Thus when the 
Stokes flow v, is known, it is possible to deduce the Oseen solution V,; for our 
purpose it is sufficient to note that the terms V, and V, are now given. The 
procedure continues by calculating the next term v, of the inner solution so that, 
at large distances from the body, it matches with (V,+V,). According to the 
argument which led to (3.4), v1 is itself regarded as the sum of two components, 
v, and v,. That these components should match separately with the V, and V, 
appearing in (4.21) can be seen by consideration of the outer solution when the 
flow at infinity is reversed. If in such a flow we write 

V = - i -V lr+ . . . , )  
p = -qr+..., 
H = i+H,+ ..., 

(4.25) 

E = -Elr+. . . ,J  
by analogy with (3.5), then Vlr, Plr, H,, and El, are seen to satisfy equations 
equivalent to (3.6) but with a formal change in the sign of R and R,. By (4.8) this 
is equivalent to interchanging a, and a2, and general solutions for the reversed 
flow field can be written down using these modifications in (4.11)-(4.20). But 
without further calculation, the approximation to the outer flow field, corre- 
sponding to (4.21), is now seen to be 

- i - V, = - V, - V, + V, + O(R2 + Rk + M 2 ) .  (4.26) 

For the first term must differ from (4.21) only by a change of sign, since it 
reduces to Stokes's solution which has this property. This determines V, and V, 
and implies one change of sign in both since in (4.21) all three terms depend 
linearly on the coefficients a, b,  c, d and k. One further change of sign in V, (but 
not in V,) arises from the change in sign of the factor (R + R,). 

An expression for v, can now be written down in terms of the velocity fields 
vo, v& v;, which satisfy Stokes's equations and tend to i, j and k respectively at  
large distances from the body. The appropriate expression, which matches with 
(4.22) is clearly v, = -y{~"oovo + #a,vA + #.;V;} (4.27) 

and the results anticipated in $ 3  follow provided that a,,, a, and a; can be 
suitably related to the force on the body according to Stokes's approximate 
solution. It is shown in the appendix that, if F, is this force, then 

(4.28) 
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Thus, finally, 
V, = (y /  1 ~ ~ P v L U , )  {Fez VO + $Fog V; + $Pos vb}. (4.29) 

There remains the case a2 < 0. Here the general solutions for #2 and x2, as 
expressed in (4.17) and (4.19), are not valid and must be replaced by expansions 
of the form 

W 

q52 = - C pn(Bn cos nf3 + Bh sin nf3) 
n= 1 

m w  

9 

OD 

W W  p 1 a "exp[&,(r+x)] 

(4.30) 

(4.31) 

General expressions for $, #1 and x1 are given, as before, by (4.15), (4.16) and 
(4.18). The definitions of a, b,  c, d and k, as given by (4.20), can be taken over 
without modification. The solutions for reversed flow are then obtained by a 
formal change in the sign of x throughout. The final result of the corresponding 
calculations is to give an approximate expression for the outer flow similar to 
(4.21) but with y = R in the definition of V,, as reported in (3.9). 

5. Comments 
That the force on the body is indeed given by (3.1 1) can be verified directly by 

carrying through the analysis of the appendix in greater detail, but when v, is 
ignored the velocity field near the body is simply a modified Stokes solution, and 
the pressure and forces are clearly modified correspondingly. The Maxwell stress 
tensor does not explicitly contribute since, by (2.3), it  is derived from a body 
force which is O ( M 2 )  near the body and so is not sensible to the first order in M .  

The change in form of the relation for y when M 2  = RR, corresponds to a 
qualitative change in the flow picture. When a2 > 0, the vorticity is exponentially 
small everywhere at large distances save in two parabolic regions where al(r - 2) 
and a2(r + x) are not large, these regions lying on either side of the body. But 
when a2 < 0, the corresponding regions are those for which a,(r - x) and - a2(r - x) 
are not large, both lying on the downstream side of the body. For the critical 
case a2 = 0, which includes the classical Oseen solution, there is only one such 
region. In this case q52 and x2 reduce to potential functions, in general having 
singularities along the x-axis. Physically speaking, the change-over marks the 
transition beyond which the disturbances associated with magneto-hydro- 
dynamic effects cannot propagate upstream. With the Oseen approximation, the 
Alfven speed of such disturbances is Uw M/(RR,)*, and the qualitative picture 
of the flow changes abruptly according as this speed is greater or less than the 
convective speed (U,) of the fluid. The disappearance of appreciable vorticity in 
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the parabolic region ahead of the body corresponds to a situation in which the 
disturbances associated with the magneto-hydrodynamic effects can no longer 
propagate upstream. 

When R and R, are negligible, y = M and certain conditions can be relaxed. 
There are no restrictions on the shape of the body, for v, = 0 and reversal of flow 
will always produce reversal of force, whatever the shape. The uniform flow a t  
infinity need not be parallel to the magnetic field, since this property was only 
used in the Oseen-type approximation to include the effects of R and R,. The use 
of inner and outer expansions is in fact not essential here. If the magnetic field 
is equal to i at infinity, then a composite solution will satisfy the equations 

(5.1) 1 V.(E+VAi)  = 0, VAE = 0, 

v .v  = 0,  0 = -Vp-VA(VAV)+M2(E+VAi). 

For the magnetic field is adequately represented at  large distances, and the fact 
that its representation may not be accurate near the body is of no consequence to 
the first order in M ,  since the body force is negligible to this order near the body. 
The convective terms, which are O(R), are majorized uniformly by the body 
force when R is negligible, and so can be neglected even in the outer solution. 

The analysis is easily adapted to the situation in which the uniform flow at 
infinity is in an arbitrary direction, and (3.11) requires only a slight modification 
to give the force. Let F,, Fh, Flj be defined as in (3.11), and let F, be the force on 
the body in the actual flow according to Stokes's approximation. Then 

For example, the drag on a sphere of radius L when moving parallel to the 
magnetic field is given by 6npvLUm(1 + QM) (Chester 1957). When moving 
perpendicular to the magnetic field the drag is 677pvLUm( 1 +AN) (Gotoh 1960b). 

This paper is an expanded version of a lecture to the British Theoretical 
Mechanics Colloquium in April 1961. 

Appendix 
With the help of the continuity equations for V' and H', the momentum 

equation in (2.1) may be written in the form div4 = 0, where 7' is the sym- 
metrical tensor given by 

and Sij is the unit tensor. Thus, by the divergence theorem, 

7 ' .  n d ~ '  = //=, . n cis', 

where X' is some surface surrounding the body, and n is the unit outward normal. 
The integral over the body is just the force on the body. For the first two terms 

in 7' are the usual contributions to the stress tensor, the terms involving H' come 
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from the Maxwell stress tensor and the last term gives no contribution since 
V' = 0 on the body. Equation (A. 2) is then equivalent to 

Force on body = - [n(p' + &IT2) +pun A (V' A V') - p(H' . n) H' 

+p(V' .n) V'] dS'. (A. 3) 

For the purpose of deriving (4.28) it is sufficient to calculate the force according 
to the first term of the inner solution. This can equally well be obtained from a 
calculation using the outer solution, by discarding all but the leading terms in the 
final expression for the force. Thus, to a sufficient order of accuracy, 

JL 

I Force on body M2 = - [.kl + 2 ~ ,  (i + H,) . (i + H,) +n A (V AV,) 
PVLU, 

1 M2 - - {(i+ H,). n} {i + Hl}+ R{(i + V,) .n} {i + V,} dS (A. 4) 

- (N2/Rm)((i+H1).n}i+R{(i+V,).n) 

can be omitted from the integrand since they give zero contribution to the 
integral by continuity. 

The surface X is chosen to be a large cylinder enclosing the body, whose ends lie 
in the planes 8, and S- defined by x = positive constant, x = negative constant 
respectively. Then the only sensible contributions to the integral, in the limit as 
the dimensions of X all tend to infinity, are from 

Rrn 
and the terms 

where equations (4.31, (4.11), (4.12) and (4.13) have been used. 
The component in the x-direction arises from the terms in q51 and q52 which are 

independent of 8. With the help of (4.16) and (4.17) or (4.30) one gets for 
this component 

In  the last term the upper sign is taken for a2 > 0, and the lower sign for a2 < 0. 
The integrals can be evaluated with the help of the following result. For a > 0 
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Substitution in (A. 7) gives 

47T 
= -~ X {(el - E m )  A o p (  - a,)"+' + (a2 + Em) BOP c@+'}. (A. 9) 

E l + %  P 

In  the limit as R, Rm and M -+ 0, this gives - 4nann, as is readily inferred with the 
help of (4.20). Thus 

.. 

Foz/pvLU, = - 47raO0. (A.  10) 

The contributions to  the other components of (A.6) arise only from those 
terms which have singularities on the x-axis. The y-component, for example, 
reduces to 

(A. 11)  

= 4 7 ~ K ~ .  (A. 13) 

By (4.20), the limiting value of K, is --a, and so 

Fo2/Ipi~LU, = --ma,. (A.  14) 

Similarly, one can show that 

F,/pvLU, = -4na; 
as required in (4.28). 

(A. 15) 
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